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Complex networks and simple models
in biology

Eric de Silva and Michael P. H. Stumpf †

Theoretical Genomics Group, Division of Molecular Biosciences, Imperial Collage London,
Wolfson Building, South Kensington Campus, London SW7 2AZ, UK

The analysis of molecular networks, such as transcriptional, metabolic and protein
interaction networks, has progressed substantially because of the power of models from
statistical physics. Increasingly, the data are becoming so detailed—though not always
complete or correct—that the simple models are reaching the limits of their usefulness. Here,
we will discuss how network information can be described and to some extent quantified. In
particular statistics offers a range of tools, such as model selection, which have not yet been
widely applied in the analysis of biological networks. We will also outline a number of present
challenges posed by biological network data in systems biology, and the extent to which these
can be addressed by new developments in statistics, physics and applied mathematics.

Keywords: biological networks; network models; network sampling; protein interactions;
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1. INTRODUCTION

Following the enormous advances in functional
genomics and molecular biology it is now possible to
at least contemplate studying cellular processes at the
level of a whole cell, rather than in isolation. Molecular
networks, such as protein interaction (Uetz et al. 2000;
Maslov & Sneppen 2002; Agrafioti et al. 2005),
metabolic (Ma & Zeng 2003) and gene regulation
networks (Ronen et al. 2002; Evangelisti & Wagner
2004) aim to capture such sets of biological processes in
a single and coherent framework. In reality, of course,
these different networks are intricately connected and
interwoven inside a cell; protein products will interact
with each other, regulate the expression of genes as well
as digesting nutrients and catalysing basic biochemical
reactions in a cells metabolism. We are still far away
from being able to consolidate these different networks
into a realistic in-silico organism.

The analysis and interpretation of present network
data is, however, already challenging enough. Since the
late 1990s research has been aided considerably by the
work of a host of physicists (see Albert & Barabasi
2002; Dorogovtsev & Mendes 2003; Newman 2003a;
Evans 2004, for mainly physics-oriented reviews).
While the models proposed have, despite their elegant
simplicity, been able to explain certain aspects of
complex biological networks, they increasingly reach
the limit of their usefulness given the amount of data
becoming available. New models, based on sound
orrespondence (m.stumpf@imperial.ac.uk).
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statistical principles, and informed by bioinformatics
are now slowly taking their place.

The theoretical underpinnings for the analysis of
networks come from statistical physics, mathematics (in
particular random graph theory; Bollobás 1998) and
computer science. Despite several attempts over the last
few years to apply concepts from these disciplines to
biological networks, success has often beenmodest. There
are numerous examples where terminology or concepts
have been taken from, e.g. statistical physics, andwrongly
applied in the description of molecular networks. We will
first discuss how networks can be analysed statistically
and described theoretically. The statistical analysis may
either focus on (structural) properties of the network
itself, or on biological properties of the constituents of the
network.While the former is well advanced the latter will
(even in the presence of high quality data) pose a range of
fascinating and challenging problems.

Below we will first introduce the biological networks
that are currently attracting most interest as frame-
work for systems biology. After that we will discuss the
different theoretical models that have been used to
model complex biological (among many other types)
networks before introducing a set of statistical tools
and, more interestingly, problems. Whenever biological
examples are discussed in this exposition they will have
a distinctly evolutionary perspective.
2. BIOLOGICAL NETWORK DATA

As already mentioned we can, very coarsely, dis-
tinguish between three types of molecular networks.
J. R. Soc. Interface (2005) 2, 419–430
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protein interaction networks evolutionary history

Figure 1. Protein interaction network data is collected in different organisms. Orthologous proteins are indicated by vertical lines,
interactions between proteins by lines within the planes. Individual proteins are also related through their joined phylogeny.
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Metabolic networks: these aim to describe the basic
biochemistry in a cell. Biologically important
reactions have been described in terms of reaction
pathways and metabolic networks are systematic
collections of such biochemical data.
Transcriptional networks: these consist of genes and
a directed edge is added between two genes if one
regulates the transcription of the other gene.
Protein interaction networks (PIN): an undirected
edge is drawn between each pair of proteins for which
there is evidence of a physical or biochemical
interaction.

Making these distinctions and simplifications must
necessarily neglect details of the biological processes. In
reality these networks will be highly and intricately
interconnected and factorizing them into distinct net-
works will ultimately underestimate the biological
complexity.

These problems are exacerbated when one considers
the often woeful quality of the data: for PIN the rates
for false-positive and false-negative results are esti-
mated to be around 40% (Bader et al. 2004; Tong et al.
2004). Bioinformatics and statistics may help to clean
the data to some extent but improvements in the
experimental techniques offer the only real solution to
this problem. Although important and interesting
(Lappe & Holm 2004) we will here not be concerned
with such issues of quality control. Rather we will
discuss what should be included in theoretical descrip-
tions of complex networks in a biological setting.

It has tobe kept inmind, though, that present network
data are highly averaged and artificial constructs: the
language of graph theory may simply be too static to
usefully describe complexbiological networks.Wemay in
approximation seek to understand networks as entities
that change over three different time-scales: (i) they will
change over evolutionary time-scales between species
(millions of years); (ii) they will change during the
course of an organism’s development (years); and finally,
(iii) connections will be formed and lost in response to
physiological change and external stimuli (sub-second to
J. R. Soc. Interface (2005)
minutes). For PIN experimental methods can at the
moment only resolve the changes in PIN structure
accumulated between species (Fraser et al. 2002; Jordan
et al. 2003; Qin et al. 2003), but data are not yet
sufficiently reliable to make meaningful comparisons.

One of the fundamental evolutionary questions
underlying comparative genomics and the fledgeling
discipline of systems biology is illustrated in figure 1.
Within each species’ PIN, interactions introduce a
dependence between interacting proteins, i.e. it may no
longer be possible to consider them independently
(Agrafioti et al. 2005). The phylogeny underlying the
different model organisms introduces a further level of
correlation (Li 1997; Felsenstein 2003). In the
functional analysis of networks we will often have to
include both types of correlation, which makes the
correct statistical analysis of biological network data
highly non-trivial.

Below we will first briefly discuss theoretical
descriptions of networks (and their ensembles). We
will continue by discussing various measures that have
been applied to characterize the (structural) properties
of networks before considering how the network affects
properties of the nodes and vice versa, e.g. when
analysing PIN data we may want to evaluate the extent
to which the network shapes the evolutionary rate of
the constituent proteins.
3. DESCRIBING THE STRUCTURE OF
NETWORKS

We describe networks in terms of (static) graphs
(Bollobás 1998); mathematically a graph is a pair of
sets GZfV ;Eg, where V is the set of N vertices or
nodes and E the set of M (undirected) links or edges
which connect pairs of nodes. Thus, each edge has an
associated pair of vertices Ni and Nj (we will generally
adopt the terminology used in the physics literature and
also strive for a similar level of mathematical sophisti-
cation unless thismay cause problems). Note that a node
Nk may not have an associated edge, i.e. it may not be
connected to any other node in the network; we also call

http://rsif.royalsocietypublishing.org/
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such nodes ‘orphans’. A connected component is a set of
nodes that is linked by edges but where no node in the
component is connected to any node outside of the
connected component. The largest component is often
called the giant connected component.

Several representations for graphs exist but the
conceptually easiest is the adjacency matrix, Ag

(Bollobás 1998; Albert & Barabasi 2002). For N nodes
the entries, aij , of this N!N matrix are simply the
number of edges between nodes i and j. For undirected
graphs Ag is symmetric, aijZaji ; for so-called simple
graphs aij is either 0 or 1 and aiiZ0, i.e. multiple edges
and edges beginning and ending on the samenode are not
allowed. As far as PINs are concerned present data do
not allow us to specify either a direction or aweight to an
individual edge; proteins may, however, interact with
themselves and, therefore, non-zero diagonal elements of
the adjacency matrix are possible. If a network consists
of several components then itwill be possible towrite the
adjacency matrix in block-form. Rows in the adjacency
matrix which correspond to orphaned nodes will contain
only the value 0 (Valiente 2002).
4. NETWORK STATISTICS

A number of statistics have been defined which seek to
summarize structural properties of networks. These have
been applied to both theoretical and real network data.
Wewill now discuss them in some detail and outline their
behaviour for both classical and scale-free random
graphs. The description of networks is complicated by
the fact that unlike regular lattices there is no real
connection between nodes and their spatial relationship;
a node has no spatial position per se (Evans 2004).Froma
statistical perspective it is perhaps interesting to note
that there exists, to our knowledge, no sufficient (in a
formal statistical sense; see, for example, Cox & Hinkley
1974; Silvey 1975) statistic for networks.
4.1. The degree distribution

The degree k of a node is the number of edges attached
to it and the degree distribution n(k) is the number of
nodes of degree k for all kR0 (Albert & Barabasi 2002;
Newman 2003a). It captures the diversity of local
neighbourhoods in the network. In a regular lattice like
an d-dimensional hypercube or Caley-tree all nodes or
lattice points will have identical neighbourhoods and
the degree is simply the coordination number. In the
Erdös–Rényi random graph it is possible to show that
the number of edges attached to a node is given by

nðkÞZNpkð1KpÞNKk
N

k

 !
z

ðNpÞkexpðKNpÞ
k!

; ð4:1Þ

i.e. for N/N the degree distribution takes on the form
of a Poisson distribution with parameter Np, the
average degree in the network. In the scale-free
network, the degree distribution takes on a power-law
(Barabasi & Albert 1999),

nðkÞZNkKg=zðgÞ; ð4:2Þ
where z(g) is Riemann’s zeta function, zðxÞZ

PN
iZ1 1=x

i

for xO1 (Abramowitz & Stegun 1974). The term scale-
J. R. Soc. Interface (2005)
free follows from analogy to concepts from statistical
physics (in particular the theory of second order phase
transitions) and the fact that for a pure power-law
degree distribution the ratio n(ak)/n(k) depends only
on a but not on k; there is no natural scale to the
network. In many cases power-law-like behaviour is
confined to the tails of the degree distribution. In order
to identify power-laws we normally require that they
last over at least two to three orders of magnitude
(Jensen 1998; Sornette 2003).

The degree distribution describes only one aspect of
the data and graphs with hugely different architecture
can exhibit similar degree distributions: a tree can have
the same degree distribution as a highly reticulated
graph (Bender & Canfield 1978; Dorogovtsev et al.
2000; Burda et al. 2001). Nevertheless, it is perhaps the
most commonly considered network characteristic. In
particular, scale-free behaviour of networks is generally
inferred solely from the shape of the degree distribution.
4.2. The clustering coefficient

The clustering coefficient (Watts & Strogatz 1998;
Newman 2003b) is a measure of the average local
neighbourhoods in a graph/network. It is defined as the
probability that two nodes j and k which are connected
to node i are themselves connected. For a node i with
degree ki there are ki(kiK1)/2 potential links among its
direct neighbours. If Ki denotes the links actually
observed among i ’s neighbours then the clustering
coefficient of node i is defined by

ci Z
2Ki

kiðkiK1Þ for kR2; ð4:3Þ

for k!2 we define ciZ0. The clustering coefficient of the
total network is then given by averaging over all nodes,
cZð1=NÞ

PN
iZ1 ci. While it has become customary to

show degree distributions rather than just the average
degree, regrettably the same is not universally true for
clustering coefficients. This is despite the fact that the
clustering coefficients often vary quite considerably
across a network (Newman 2001). Studying such
variation, for example, reveals that most nodes have a
small clustering coefficient ciz0. This reflects the
observation that local neighbourhoods of nodes in a
network are often tree-like.
4.3. Average path-length and network diameter

As the position of nodes in networks bears no relationship
to their spatial positions the distance between two nodes i
and j is defined through the minimum number of edges
that have to be traversed to reach j starting from node i.
For directed networks the shortest path in the network
may be the distance between i and j and j and i,
respectively; in undirected networks it is of course the
same. If we denote the distance between nodes i and j
by lij then the average path-length is defined by

hliZ 2

NðNK1Þ
X
hi; ji

lij ; ð4:4Þ
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Figure 2. (a) all possible motifs defined by three nodes in a
directed network. (b) All motifs possible defined by four nodes
in an undirected network.
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where hi, j i indicates that the sum runs over all different
pairs i, j (Valiente 2002).

The diameter of a network is given by the maximum
distance in the network, i.e.

D ZmaxðlijÞ: ð4:5Þ

If in an undirected network there is no path
connecting nodes i and j then the distance lij is set
to N. This is, for example, the case if the network
consists of a number of connected components whence
the average path length and the network diameter are
also defined to be N. Unlike the previous statistics
average path-length and network diameter are com-
putationally quite intensive. Calculating all shortest
paths in a graph is at least of order O(N 2 ln(N )) (if
we use adjacency lists).

These statistics have attracted considerable interest
following the work of Watts, Strogratz (Watts &
Strogatz 1998) and others (Newman & Watts 1999;
Newman 2000; Zhou 2002) which reevaluates Stanley
Milgram’s classical notion of six-degrees of separation
(Milgram 1967; Travers & Milgram 1969). Briefly,
social networks, and most biological networks have a
much smaller diameter than would be naively expected.
In a regular one-dimensional network the diameter is
given by the number of nodes N; in a ring the diameter
is equal to N/2 and in a square lattice the largest
distance is given by 2

ffiffiffiffiffi
N

p
. For real networks it was,

however, observed that the diameter (or equivalently
the average path-length) increases very slowly, e.g.
Dflog(N ).

There appears to have been some misunderstanding
(Bader et al. 2004) about just how common short
average pathlengths or small network diameters are in
real networks as well as in theoretical network models:
classical random graphs (above the structural phase-
transition) have this property as do (many) scale-free
networks and virtually all naturally occurring net-
works. Thus, small world effects are the rule, not the
exception (Watts 1999; Newman 2000). In a strict sense
small-world behaviour (e.g. as exemplified by the
models of Watts 1999; Newman 2000) requires a
logarithmically growing diameter (or average path-
length) and a high clustering coefficient.
4.4. Network motifs

Alon and co-workers (Milo et al. 2002, 2004; Shen-Orr
et al. 2002; Kashtan et al. 2004) have introduced the
notion of network motifs. In their definition (and the
term has been applied differently by other authors) a
motif is a pattern that occurs at a statistically increased
frequency in the network. In part a of figure 2 we show
the possible motifs that can occur between three nodes
in a directed network; part b of the same figure shows
the four-node motifs in an undirected network.

In the search for motifs one first counts all
occurrences of the various patterns of interest. The
statistical significance of each pattern is then assessed
by randomizing the edges in the true network among
the nodes, keeping the degree of each node fixed to its
observed connectivity; the frequencies of the patterns
J. R. Soc. Interface (2005)
are then determined for the randomized network.
Repeating this for a sufficiently large number of times
yields a frequency distribution for each pattern in the
ensemble of randomized networks. From this it is
possible to arrive at a p -value for the pattern in the true
network. Those patterns that occur at a significantly
increased frequency in the true network are called
motifs (Milo et al. 2002; Maslov et al. 2003).

It is worthwhile to consider what the meaning of
these motifs is; this is, in fact, somewhat easier to see in
directed networks where a direct and intuitive analogy
to logic or electronic circuits exists. For example, the
pattern 9 shown in part a of figure 2 corresponds to a
feed-forward loop. Scanning through a network may
thus elucidate the regulatory architecture of the
network. Alon et al. (Milo et al. 2004) have applied
such an approach to study motif spectra of different
networks and suggested that it is possible detect
superfamilies of networks with similar motif-spectra,
i.e. a similar local logical organization of the network.
For undirected graphs, however, motifs will only tell us
about the extent to which certain neighbourhoods are
overrepresented in the network. In the case of PIN we
may for example be able to determine how often
quadruplets of proteins occur where each pair is
interacting, pattern 6 in figure 2b.

While the notion of motifs is appealing, the
interpretation of motifs and their biological relevance
can be subject to some controversy. For example,
Wuchty & Stadler (2003) find that proteins in highly

http://rsif.royalsocietypublishing.org/
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connected motifs are more evolutionary conserved than
would be expected by chance.1 Mazurie et al. (2005) on
the other hand find no correlation between motifs and
evolutionary or functional characteristics. These
authors conclude that motifs cannot be analysed in
isolation from the rest of the network.
4.5. Network spectra

The final, most detailed but perhaps hardest to
interpret perspective on networks is provided by a
network’s spectrum (Chung 1997; Farkas et al. 2001;
Albert & Barabasi 2002; Bu et al. 2003). This follows
from the eigenvalues l of the adjacency matrix A, i.e.
the solutions of (AKlI )Z0, where I is the identity
matrix. For a N!N adjacency matrix we will have N
eigenvalues li, iZ1, 2,.,N and the spectrum of the
adjacency matrix is defined by

rðlÞZ 1

N

XN
jZ1

dðlKljÞ; ð4:6Þ

with d(x) the standard Dirac delta function.
There has been considerable interest in the extent to

which the spectrum of a graph reflects local and global
network structure (Bu et al. 2003; Chen & Xu 2003;
Kamp & Christensen 2003) and this will probably
continue to be an area of interest.
2In the LCD construction a graph is evolved as follows.
(i) Start from an empty graphG

ð0Þ
1 at time tZ0 which contains no

nodes and no edges (we could also start from G
ð1Þ
1 , a network
5. THEORETICAL NETWORK ENSEMBLES

The analysis of real networks is greatly aided by
understanding how the various statistics discussed in
the previous section behave in theoretical models of
networks (Krzywicki 2001). We will briefly outline the
behaviour of, what have become, the two canonical
ensembles of networks, the classical or Erdös–Rényi
(Erdös&Rényi 1959, 1960) randomgraphs and the scale-
free random graphs (Aiello et al. 2001; Bollobás &
Riordan 2003).

Graph ensembles play a central role in the theo-
retical analysis of networks. They are defined by the
following.

(i) A set of graphs GZðV; EÞ.
(ii) A statistical weight §ðgÞ for each graph g2G.

If §ðgÞ is constant then the graph ensemble will be
equivalent to the microcannonical ensemble of statisti-
cal physics. Similarly, for varying §ðGÞ, network
ensembles corresponding to the canonical (N and M
fixed) and grand canonical ensembles (N fixed MR0)
can be constructed (Dorogovtsev & Mendes 2003).
with a single node and a single edge which starts and ends at
the same node).

(ii) Add a new node and attach it to node s with probability

Ps Z
dsðtK1Þ=ð2tK1Þ for 1%s% tK1;

1=ð2tK1Þ for sZ t:

(
ð5:1Þ
5.1. Classical random graphs

There are two definitions of a classical random graph;
these become identical in the thermodynamic limit,
1We note here that only the observed number of motifs is cited in
Wuchty & Stadler (2003), not their Z-scores. Moreover in a network
comprising 3183 proteins they find e.g. 3.6 million copies of motif 1 in
figure 2b. This can only happen if motifs are counted in a highly
degenerate way which raises the question as to whether such a motif
definition will give rise to biologically meaningful results.

J. R. Soc. Interface (2005)
N/N. The first, due to Erdös–Rényi (Erdös & Rényi
1959, 1960)and denoted by G(N, M), is given by a set of
N nodes andM edges which are randomly placed among
the nodes; one may explicitly specify that there can be at
most one edge between every pair of nodes but this is
negligible until MxN(NK1)/2. The second classical
random graph ensemble was proposed by Gilbert (1959)
and is here denoted by G(N, p), where N is again the
number of nodes and p is the probability of a pair of nodes
being connectedbyan edge; in this ensemble the expected
number of edges, E½M �Zp!N ðNK1Þ=2. The degree
distribution of a classical random graph is given
approximately a Poisson distribution (Binomial at
small values ofN ) with parameter l equal to the average
number of edges per node.

Classical random graphs have been studied exten-
sively inmathematics (Bollobás 1998; Janson et al. 1999)
and statistical physics (Stauffer & Aharony 1992). Of
particular interest has been the structural phase-
transition in the thermodynamic limit N/N. For
p/ ~pZ2=ðNðNK1ÞÞ the network or graph will consist
of many separate small connected components. At pZ ~p
one of these components grows, increasingly amalgamat-
ing with other smaller components; this is often referred
to as the giant connected component. Quite generally
classical randomgraphs exhibit the small-world property
for pO ~p. This point has sometimes not been appreciated
in parts of the literature, where network concepts have
been applied to (especially) biological network data.
5.2. Scale-free random graphs

Many important real networks, including the molecular
networks, have degree distributions which decay much
more slowly than exponentially (Alm & Arkin 2003;
Evangelisti & Wagner 2004; Li et al. 2004; Agrafioti
et al. 2005). In terms of the degree distribution classical
random graphs are therefore unable to explain at least
some aspects of real data. Barabási and Albert
(Barabasi et al. 1999b) have shown that a simple
probabilistic model can give rise to networks with a fat-
tailed degree distribution. The so-called Barabási–
Albert model has since then been shown to be
mathematically ill-defined by Bollobás & Riordan
(2003), but the LCD construction2, which gives rise to
where ds(t) is the connectivity of node s at time t.
(iii) Return to (ii).

The LCD construction allows (i) for nodes which are separated from
the rest of the network, (ii) multiple edges between nodes and (iii)
loops. Networks are grown by adding one node at a time. It is also
possible to model processes where m edges are added at each time-
step,G

ðtÞ
m ; G

ðtÞ
m is generated from G

ðmtÞ
1 by combining the first m nodes,

n01;.; n0m to form node n1, etc.

http://rsif.royalsocietypublishing.org/
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a properly defined graph ensemble can be used
(Bollobás 1998). Essentially, scale-free random net-
works are generated through growing a network by
adding a new node at each time step and attaching it to
existing nodes proportional to their connectivity. Other
growth models, in particular certain processes where
existing nodes are duplicated, retaining their edges with
probability 0!p!1, can also give rise to scale-free
models in the limit where N/N (Aiello et al. 2001).
These networks are called scale-free because the ratio
Pr(ak)/Pr(k) depends only on a but not on k. Scale-free
networks capture some vestiges of real networks but the
great attention they have received is also due to the fact
that scale-free behaviour can be generated by
relatively simple models (Barabasi et al. 1999b, 2001;
Dorogovtsev et al. 2000; Goh et al. 2002; Moreira et al.
2002). They, too, are an oversimplification of the true
process underlying network evolution (Yook et al. 2004).
5.3. Other random graph ensembles

Classical and scale-free random graphs have become
the canonical theoretical exampled for real complex
networks. Due to their shortcomings other models have
been considered, too. These other models can be loosely
divided into two classes: theoretically motivated
models which generate networks that capture one or
more aspect of real networks, e.g. an empirical degree
distribution, or evolve networks by a more flexible
mechanism (Dorogovtsev et al. 2002) and mechanistic
models which implement a model of network growth or
evolution.

The former approach was pioneered by Bender &
Canfield (1978), and refined by Molloy & Reed (1995)
and Newman and co-workers (Newman et al. 2001;
Newman 2003c). The latter approach is more recent
and examples include the various models that have
been proposed to generate scale-free networks. Net-
works are generated by defining a set of nodes and the
number of edges incident on them. These are then
connected randomly to form a network with a
predefined degree distribution.

More recently still, biologically motivated models
have been introduced (Wagner 2003; Berg et al. 2004)
where authors have looked at the basic biological
processes involved in the generation of real biological
networks. These may include:

Node duplication: existing nodes are duplicated and
the copy retains some or all of the interactions of the
original node. Levels of duplication can be estimated
from phylogenetic comparisons of paralogues;
initially, at least, duplicated genes/proteins would
fulfil similar functions.
Node attachment: new nodes are added to the
network and attached to existing nodes (preferen-
tially or randomly); horizontal transfer may offer a
corresponding biological mechanism.
Node deletion: existing nodes and their incident
edges are deleted; this may for example happen if a
gene incurs a loss-of-function mutation.
Edge dyanamics: new edges can be formed, existing
edges deleted or rewired. Again, this may be caused
by mutations to the coding sequence.
J. R. Soc. Interface (2005)
Based on these processes it is possible to derive
properly defined network ensembles. These can either
be parameterized by biological data or be used to
estimate biological parameters such as the effective rate
at which proteins where duplicated. It has to be kept in
mind, though, that the true evolutionary process
underlying networks was much more complicated and
will have contained a number of unique events, e.g. the
whole genome duplication event in S. cerevisiae about
200 million years ago. At the moment it is unclear if
such contingent processes can be modelled by statistical
network ensembles. As pointed our by Burda et al.
(2001), however, even if a network ensemble does not
capture the true dynamics of network evolution, the
study of suitable network ensembles can provide
insights into the probabilistic behaviour of networks
(Berg & Lässig 2002; Burda & Krzywicki 2004). In light
of the problems addressed above further studies into
biologically motivated finite-size network models may
offer more interesting insights into biological network
than has been the case for scale-free networks.
6. ANALYSIS OF PROTEIN INTERACTION
NETWORKS

We will illustrate some of the challenges posed by
network data using protein interaction network data.
The poor quality of such data has been well documen-
ted and there have been some attempts at improving
data sets using in-silicomethods or labourious curation.
Ultimately, more reliable experimental techniques may
offer the only option to arrive at more reliable data;
however in evolutionary studies the mean of an
observable is frequently overwhelmed by the corre-
sponding variance. Thus, even given more reliable
interaction data considerable statistical challenges will
nevertheless persist and below we will outline three
such areas.
6.1. Structural analysis

In figure 3 we show the degree distribution of the yeast
PIN (circles) and the best-fit power-law model (red).
The first observation is that present data differs quite
substantially from the pure power-law. The deviation is
most pronounced at low and high values of k. This is
often believed to be due to finite-size effects (Doro-
govtsev &Mendes 2003). Also shown in the figure is the
best-fit lognormal distribution, which, interestingly,
does a rather good job at describing the empirical
distribution. The improved fit is confirmed using
methods from formal statistical model selection theory.
The curves in figure 3 were fitted by determining the
parameters of two curves in a maximum likelihood
framework. If we denote the log-likelihood (Davison
2003) of a (potentially vector-valued) parameter q by
lk(q)ZSkln(Pr(k)) then the Akaike information cri-
terion (AIC) (Akaike 1983; Burnham & Anderson
1998) for model i is given by AICiZK2lk(qi)C2ni,
where ni is the number of parameters of model i. Unlike
the likelihood ratio test the AIC allows us to formally
compare the expanatory power of non-nested probabil-
istic models. The AIC—or the related Bayesian
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Figure 3. Degree distribution of the yeast protein interaction
network (black circles) and best-fit power-law (red) and log–
normal (blue) models (see Stumpf & Ingram 2005; Stumpf
et al. 2005; Stumpf et al. in press for details).

random
sampling

neighbourhood
sampling

Figure 4. Two potential sampling schemes: under neighbour-
hood sampling, nodes connected to some initially chosen
nodes (red) are more likely to be included in the set of nodes
(blue) investigated. Under random sampling nodes are chosen
(approximately) at random for the interaction studies.
Lightblue nodes are not included in the experimental analysis.
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information criterion—biases against models with more
parameters that do not add significantly to a model’s
power to explain the data. While these methods
frequently used in various branches of quantitative
biology (see, for example, Strimmer & Rambaut 2002),
they have not been widely applied in the analysis of
network data.

The power-law has been favoured over other models,
e.g. the Erdös–Rényi random graphs, because (i) it has
a broader tail and (ii) simple mechanistic models
asymptotically give rise to power-law degree distri-
butions. Simulating the Barabási–Albert or LCDmodel
we find that the AIC always favours the power–law
distribution over the log–normal distribution
(especially if analysis is restricted to connectivities
kT5), even for small networks with NZ500; for real
network data this does not appear to be the case. We
find, that for the yeast PIN the lognormal distribution
(blue) offers a better description of the data than the
pure power-law or its heuristic finite-size versions
(Stumpf & Ingram 2005; Stumpf et al. 2005, in press).
The AIC for the power–law is z26 920 compared to
z25 430 for the lognormal; when translated to relative
likelihoods the lognormal is 105 more likely to explain
the observed data than the power-law (Stumpf &
Ingram 2005; Stumpf et al. 2005, in press). As all
assertions of scale-free behaviour have been based on
the degree distribution (Barabasi & Albert 1999; Wolf
et al. 2002) this suggests that the notion of scale-free
behaviour—as identified by a power-law degree distri-
bution—may not hold up to statistical scrutiny. There
have also been interesting attempts at using geometric
random graphs (Penrose 2003) to describe networks;
these also show that there are other network ensembles
which may be better at explaining real biological
networks than scale-free networks (Przulj et al. 2004).

The degree distribution captures only one, and by no
means the most important, aspect of network data.
J. R. Soc. Interface (2005)
Recently, Middendorf et al. (Middendorf et al. 2004,
2005) have developed approaches that aim to charac-
terize networks formally and determine which ensemble
best fits the data using machine learning techniques
such as support vector machines. Their results confirm
that there is more to networks than can be captured by
scale-free ensembles; for example real networks tend to
exhibit certain degree–degree correlations which stan-
dard network ensembles do not Berg & Lässig (2002)
6.2. Sampling properties

So far the vast majority of network analyses have
considered the network data as potentially unreliable
but, at least in principle, as representative of the true
network. Until very recently (Stumpf et al. 2005)
nobody had considered the fact that most network
datasets, and certainly all biological network datasets,
are only subnets embedded in the true but largely
unobserved networks. The extent to which such
subnets have identical or at least similar properties of
the global network depends on the networks under
different sampling schemes.

In figure 4 two different sampling schemes are
illustrated. Under neighbourhood sampling, nodes are
chosen (perhaps because of prior biological knowledge)
and their local neighbourhood is explored; for example
proteins involved in similar processes or in the same
compartment may be included into the experimental
set-up with higher probability. We would thus expect
the local network neighbourhoods of the initial target
nodes to fairly well represented. Under random
sampling there is a finite probability 0!p!1 for a
protein to be included in the experiments. This is the
most parsimonious sampling scheme as it does not
require prior knowledge and/or bias of the exper-
imenter. It also has by far the nicest mathematical
properties and is most amenable to mathematical
analysis (Stumpf et al. 2005; Stumpf & Wiuf in press).
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For random sampling it is possible to determine
whether the subnet will have similar properties as the
overall global network; if this is the case we say the
network is closed under the sampling scheme. For
example, it is possible to show that the degree
distribution of a subnet sampled from an Erdös–Rényi
network will also be described by a Poisson distri-
bution, but with parameter pl rather than l. Interest-
ingly, however, subnets from scale-free networks are
not scale-free; in fact for most types of networks the
subnet will be qualitatively different from the true
network. The reverse is also true: if a subnet—for
example, any of the current protein interaction network
datasets—is shown to be scale-free, then the true global
network cannot itself be scale-free. For neighbourhood
sampling the situation is even more complicated: even
Erdös–Rényi networks are no longer closed under this
sampling scheme.

For networks of the type used by Berg et al. (2004) it
can be shown, that they are also not closed under
random sampling. This means inferences from network
data, which do not take into account the fact that
present molecular network data only describe subnets
sampled from the whole network could be misleading.
Graph spectra and inferences frommotifs are even more
susceptible to sampling error than the degree distri-
bution. Interestingly, under random sampling the
probability of retaining a motif in the subnet depends
only on the number of nodes. Thus the probability of
keeping any of the motifs in part b of figure 2 is p4.

It is, however, relatively straightforward to adapt
current network ensembles so that they incorporate
sampling properties. IfN 0 out ofN nodes are included in
the network data, then the ensembles can be used to
model the evolution of a network of size N and then cull
the nodes until a dataset of size N 0 is obtained. The
network properties of subnets, thus constructed can
then be compared to experimental data. Failure to
appreciate the incomplete nature of networks, and the
peculiar sampling features of networks, has compro-
mised some published studies and some results may
need to be reevaluated in light of the sampling process
by which network data are collected.
6.3. Evolutionary and functional analysis

So far we have only discussed structural properties of
networks. Here, we will assess the extent to which
network structure reflects biological or biochemical
processes or properties inside cells. In particular we are
interested in the extent to which the network affects
evolutionary properties of its constituent nodes (e.g.
genes or proteins). Such system-level evolutionary
information, in turn, will be informative about how
transferable results of functional studies are between
species.

An initial analysis of the impact of the interaction
network on the evolutionary rate of proteins has been
analysed by several groups (Pal et al. 2001; Wagner
2001; Fraser et al. 2002, 2003; Jordan et al. 2003; Fraser
& Hirsh 2004; Bloom & Adami 2004) with different
results. Some studies suggest that the evolutionary rate
of proteins decreases with their connectivity (see, for
J. R. Soc. Interface (2005)
example, Wagner 2001; Fraser et al. 2003) while others
have suggested that this effect only applies to the most
highly connected proteins, or becomes negligible once
expression level differences have been accounted for
(Jordan et al. 2003). These studies differed in the protein
interaction data sets used, the species analysis and use of
other data beyond interaction data. And all of these
differences could have contributed to the different
results obtained. A recent comparative study of the
PINs in S. cerevisiae and C. elegans by Agrafioti et al.
(2005), which used larger protein interaction data sets
and larger, better resolved phylogenetic panels of
closely species for rate estimation, as well as protein
expression data and functional annotations reexamined
this question. Expression appears to be indeed more
closely correlated with changes in a protein’s evolution-
ary rate than its connectivity. Present connectivity data
does, in fact, have negligible explanatory power when
other data such as gene ontology (GO) data is available.
It has to be again kept in mind, though, that PIN data
does not cover the whole protein interaction network
but only the interactions between a subset of the
proteins known to exist in S. cerevisiae and C. elegans.

Finally, there have been several studies which
suggest that the properties, such as evolutionary rate
of protein expression levels, of connected nodes are
more similar than would be expected by chance
(Williams & Hurst 2000; Fraser et al. 2002). The
statistical significance of observed patterns is evaluated
against a Null model of the network. Two different
types of Null model have been used in the literature; the
first has already been discussed in relation to network
motifs (Maslov et al. 2003). In most evolutionary
studies, however, a simpler bootstrapping (Efron &
Tibshirani 1998) procedure was employed (e.g. see
Fraser et al. 2002): if there are M edges in the original
network then 2M nodes are chosen at random and their
similarity calculated. Repeating this procedure a
sufficiently large number of times yields an empirical
Null distribution against which properties of the
observed network are compared. This turn out to
inflate the statistical significance of observed network
data, as nodes with connectivity kZ1000 contribute to
the bootstrap samples with the same weight as nodes
with connectivity kZ1 or kZ0. It has been shown that
weighing nodes by their connectivity increases the 95%
bootstrap confidence intervals considerably by up to
25% (Agrafioti et al. 2005).

More generally, the correct Null distribution for the
statistical analysis of network data will depend not only
on the structure of the network itself, but also its
hierarchical organization (Yook et al. 2004): if proteins
belonging to the same biological processes or located in
the same cellular compartment are more likely to
interact with proteins in the same process/compart-
ment, then this ought to inform the Null model.
6.4. Comparing networks

Species comparisons have been used extensively to
complement functional studies, including gene predic-
tion and functional annotation of genes. A comparative
approach, of network data from different species, for
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Table 1. Number of orthologous pairs from reciprocal BLAST
between organisms and number of shared interactions and
motifs among shared orthologues.

(It appears that proteins in the same motif have related
biological functions; for instance, all the proteins in the large
yeast–human motifs appear to be related transcription
initiation and transcription factors. PIN data was taken
from the database of interacting proteins, dip.doe-mbi.ucla.
edu. The small number of shared motifs reflects the
incomplete nature of the interaction data as well as the
difficulties in correctly identifying orthology.)

orthologous
proteins

shared
edges shared motifs

fly4human 364 12 0
fly4worm 1055 43 1!3-motif
worm4human 228 4 0
yeast4fly 1408 80 4!3-motif
yeast4human 284 40 5!3-motif and

3!4-motif
yeast4worm 692 23 1!3-motif
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example like the one illustrated in figure 1, will provide
insights into the functional organization at the system
level and several groups have attempted to compare
networks from different species. Most recently, Sharan
et al. (2005) have identified conserved patterns of
protein interactions in S cerevisiae, C elegans and
D. melanogaster using sequence similarity to identify
orthologous proteins. They have shown that such
protein sequence-based network alignments can be
used to assign protein functions and predict protein
interactions. Unfortunately, such studies are plagued
by the quality and the sampling nature of the data;
therefore inferences are still quite limited. The numbers
of orthologous proteins for which interaction data exists
in more than one species is quite small (Kelley et al.
2003; Sharan et al. 2005; Wuchty & Almaas 2005).
Using reciprocal BLAST searches to find putative
orthologous proteins reveals that only a tiny number
of patterns are shared between e.g.D. melanogaster and
C. elegans where we find only a single pattern involving
three nodes (see table 1). Recently, Sharan et al. (2005)
have pointed out that straightforward reciprocal
BLAST search does an insufficient job at reliably
identifying shared patterns in different PIN; including
additional potential orthologous proteins flagged up in
the BLAST searches does, however, lead to the
identification of pairs of proteins that (i) are sufficiently
similar in sequence and (ii) appear to play a similar part
in the PINs of different species. The identification of
orthologous proteins between distantly related
species—such as the species in table 1—will require
the development of more powerful and rigorous
inferential frameworks (Sonnhammer & Koonin 2002).

A complementary approach to such sequence-based
approaches would be to align biological networks
without reference to the sequence of the proteins/genes
but based solely on the occurrence of certain patterns.
The work by Berg & Lässig (2004) is a promising start
in this direction; given the complexity of the graph
isomorphism problem (Valiente 2002) and the lack of a
J. R. Soc. Interface (2005)
well defined distance between graphs this is, however, a
challenging problem. Combining and comparing result-
ing alignments will elucidate the impact of the network
on the biology/biochemistry and vise versa. Biological
information may also guide in the development of
suitable heuristics for network alignment algorithms.
One challenge here will be to construct an alignment
procedure which integrates biological (sequence or GO)
information, with strutural network properties.
7. CONCLUSION

Quantitative methods for the analysis of biological
network data are still in their infancy. Given the scope
and detail (however unreliable) simple statistical net-
work models are reaching the limits of their applica-
bility. Improved network models will have to be more
flexible and take into account that networks are finite
(and often too small for mean-field theories (Barabasi
et al. 1999a; Newman et al. 2000) to be useful), have
modular organization, and that present network data
often contain only incomplete samples from the true
network. Finally, they have to be more flexible at
incorporating additional biological information. Unfor-
tunately, this may entail using models with more
parameters than the simple models used so far.
Statistical model selection tools, like the AIC, will be
useful in establishing sets of models which (i) can
describe the data adequately and (ii) are not over-
parameterized.

When describing biological processes at the system
level (e.g. a cell) it is important to remember that the
data is often very noisy, and the processes highly
complex: molecular abundances and interactions
change over time and in response to external stimuli
as well as to dynamical intrasystem processes. The
static language of graph theory used to describe todays
biological networks may reach its limits when the
conditionality and contingency of interactions need to
be considered.

We thank Carsten Winf and Bob May for many helpful
discussions; the manuscript has greatly benefited from the
comments of three anonymous referees. Financial support
from the Wellcome Trust is gratefully acknowledged.
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Berg, J. & Lässig, M. 2002 Correlated random networks.
Phys. Rev. Lett. 89, 228 701. (doi:10.1103/PhysRevLett.
89.228701.)
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